Nonequilibrium glassy dynamics of self-propelled hard disks.

نویسنده

  • Ludovic Berthier
چکیده

We analyze the collective dynamics of self-propelled particles in the large-density regime where passive particles undergo a kinetic arrest to an amorphous glassy state. We capture the competition between self-propulsion and crowding effects using a two-dimensional model of self-propelled hard disks, which we study using Monte Carlo simulations. Although the activity drives the system far from equilibrium, self-propelled particles undergo a kinetic arrest, which we characterize in detail and compare with its equilibrium counterpart. In particular, the critical density for dynamic arrest continuously shifts to larger densities with increasing activity, and the relaxation time is surprisingly well described by an algebraic divergence resulting from the emergence of highly collective dynamics. These results show that dense assemblies of active particles undergo a nonequilibrium glass transition that is profoundly affected by self-propulsion mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks.

We introduce a kinetic Monte Carlo model for self-propelled hard disks to capture with minimal ingredients the interplay between thermal fluctuations, excluded volume, and self-propulsion in large assemblies of active particles. We analyze in detail the resulting (density, self-propulsion) nonequilibrium phase diagram over a broad range of parameters. We find that purely repulsive hard disks sp...

متن کامل

Glassy dynamics of athermal self-propelled particles: Computer simulations and a nonequilibrium microscopic theory.

We combine computer simulations and analytical theory to investigate the glassy dynamics in dense assemblies of athermal particles evolving under the sole influence of self-propulsion. Our simulations reveal that when the persistence time of the self-propulsion is increased, the local structure becomes more pronounced, whereas the long-time dynamics first accelerates and then slows down. We exp...

متن کامل

The nonequilibrium glassy dynamics of self-propelled particles.

We study the glassy dynamics taking place in dense assemblies of athermal active particles that are driven solely by a nonequilibrium self-propulsion mechanism. Active forces are modeled as an Ornstein-Uhlenbeck stochastic process, characterized by a persistence time and an effective temperature, and particles interact via a Lennard-Jones potential that yields well-studied glassy behavior in th...

متن کامل

Self-propelled hard disks: implicit alignment and transition to collective motion

We formulate a model of self-propelled hard disks whose dynamics is governed by mutually coupled vectors for velocity and body orientation. Numerical integration at low densities reveals that the expected transition from isotropic to aligned collective motion is present. However, the transition at the Landau meanfield level is strongly first-order, while it is continuous in the Vicsek model. We...

متن کامل

Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.

We present a mode coupling theory study for the relaxation and glassy dynamics of a system of strongly interacting self-propelled particles, wherein the self-propulsion force is described by Ornstein-Uhlenbeck colored noise and thermal noises are included. Our starting point is an effective Smoluchowski equation governing the distribution function of particle positions, from which we derive a m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 112 22  شماره 

صفحات  -

تاریخ انتشار 2014